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INTRODUCTION 

Investigation of  the nonthermal equilibrium flow of  a fluid 
through a packed bed is of  interest because of  the important 
applications of  porous beds. These applications include the 
storage of  heat energy, chemical reactors, and adsorption 
and absorption operations [1]. In recent works [1-4] a general 
set of volume-averaged governing equations for nonthermal 
equilibrium, forced fluid flow through sensible and latent 
heat storage beds is presented and comprehensive numerical 
analyses of the phenomena are carried out. In these ref- 
erences the two-energy-equation model is utilized in which 
the temperature difference between the fluid and solid phases 
is taken into account. Proceeding from this model, ref. [5] 
discusses some energy characteristics of the thermal charging 
and discharging of packed beds. In ref. [6], the temperature 
difference between the fluid and solid phases is analyzed and 
found to exhibit wave properties. 

Most of the analytical studies of  these phenomena are 
concentrated on the Schumann model of  a packed bed, sug- 
gested in ref. [7]. In the Schumann model a flow of  incom- 
pressible fluid through a packed bed is considered and the 
thermal conduction terms in both the fluid and solid phase 
energy equations are neglected. In the present paper we fol- 
low this model. The following assumptions are employed : 

• the fluid phase is incompressible and the mass flow rate at 
every cross-section of the packed bed is constant ; 

• thermal, physical and transport properties are independent 
of temperature and location ; 

• conductive heat transfer is negligible within both the fluid 
and solid phases ; 

• heat transfer and fluid flow are one-dimensional ; 
• the fluid phase is initially in thermal equilibrium with the 

solid phase. 

As follows from ref. [8], under these assumptions the equa- 
tions governing the solid and fluid temperature distributions 
can be presented in the following nondimensional form : 

8O 
8~-= ~b-0 (la) 

A + ~z  = 0-~b (lb) 

where 
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A ~ ~pfCpf 
(1 - ~)p~c~" 

Here the dimensionless temperature of  the solid phase is 
defined as 

Ts - T~ O(z, t) = - -  (2a) 
T2 - Ti 

and the dimensionless temperature of  the fluid phase is 
defined as 

T f -  T~ 
~ ( z ,  t) = - -  ( 2 b )  

T2 - T~ 

where T~ and 7'2 are reference temperatures chosen to suit- 
ably normalize the initial and boundary conditions. If Ts 
(0, 0) ~ Tf (0, 0), 7"1 and/ '2  can be selected as 

T1 = Ts(0, 0) (3a) 
and 

7"2 = Tf(0, 0). (3b) 

The dimensionless time and coordinate in equations (la) 
and (lb) are defined as follows: 

hsfasfl '  
t - - - -  

(1 -~)p~c~ 
and 

h~rasfz' 
Z =  

gpfcpfv " 

The analytical solutions for equations (la) and (lb) for 
different boundary conditions are obtained in refs. [9-13]. In 
ref. [14] the solution for the case when the entrance fluid 
temperature is a function of  time is obtained. In this refer- 
ence, the following initial and boundary conditions are uti- 
lized : 

O(z, 0) = 00(0) (4a) 

q~(0, t) = ~ . ( t ) .  (4b) 

Upon simple rearrangement, the solution obtained in ref. 
[14] can be put into the following form : 

I0 Az O(z, t) = e x p ( - z )  ~ i ~ ( t - A z - ~ )  

xexp(--z)lo[(4zz)'/Z]dz 

+exp(Az--t)[Oo(z)+;Oo(z-O 
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NOMENCLATURE 

a,f specific surface area common to solid and 
fluid phases [m2/m 3] 

Cp specific heat at constant pressure 
[J kg -I K -I] 

hsf fluid-to..solid phase heat transfer coefficient 
[W m -2 K -l] 

/~ modified Bessel function of  the order v 
L dimensionless length of  the porous slab 
L' length of  the porous slab [m] 
t dimensionless time 
t' time [s] 
tf dimensionless duration of heating 
T temperature [K] 
Umi n the lower boundary for admissible 

controls 
Uma~ the upper boundary for admissible 

controls 
v velocity of the fluid phase [m s-  ~] 
z dimensionless Cartesian coordinate 
z' Cartesian coordinate [m]. 

Greek symbols 
e porosity 
~b dimensionless temperature of  the fluid 

phase 
~b~. dimensionless inlet temperature of  the fluid 

phase ^ 
~b~n optimal inlet temperature of  the fluid phase 
¢(¢~.) the performance functional 
2~ the Lagrange multiplier 
A the ratio of  the effective heat capacities for 

the fluid and solid phases 
0 dimensionless temperature of  the solid 

phase 
00 dimensionless initial temperature of the 

solid phase 
p density [kg m-3]. 

Subscripts 
f fluid 
s solid. 

[ t -  Az~ 1/2 1 

xexp( -~ ) lo[{4~( t -Az ) } l /2]d~  

I'z\l/2 dz]. (6) x exp(--z) [~)  Ii[(4zz)'/21 

Equations (5) and (6) determine the temperatures of  the 
solid and fluid phases at a particular point in the porous 
bed with the positio]a z' (or corresponding dimensionless 
coordinate z), after this point is reached by the temperature 
front moving from tl~Le fluid inlet boundary with a velocity 
v, i.e. when t" >~ z'/v. In the dimensionless coordinates this 
condition is t >t Az. Because the thermal conductivity within 
both the solid and fluid phases is neglected, for t < Az the 
temperature of  the so]!id phase at this point equals the initial 
temperature determi~ed by the function 00 (z) in equation 
(4a). 

STATEMENT AN[) SOLUTION OF THE OPTIMAL- 
CONTROL PROBLEM 

Consider a one-dimensional porous slab of  the length L'. 
The dimensionless lerLgth of  the slab is then defined as 

hsfasf L " L -  
~ p f c p f U  " 

It is assumed that the initial temperature of  the slab is 
uniform. If the reference temperatures, T~ and/ '2,  are chosen 
according to equations (3a) and (3b), then according to 
equation (2a) the dimensionless initial temperature of  the 
solid phase equals zero. This essentially simplifies equations 
(5) and (6), because in this case the second term on the right- 
hand side of  equation (5) and the first term on the right- 
hand side of  equation (6) equal zero. 

It is assumed that the dimensionless fluid temperature at 
the entrance to the porous slab is given by some function of  
time, qS~,(t). Since there is a temperature difference between 
the fluid and solid phases, the outlet fluid temperature is 
higher than the temperature of  the solid phase at the fluid 
outlet. In other words, a part of  the heat that could be stored 
in the porous slab leaves the slab with the fluid flow. To 
increase the efficiency of  heat storage in the packed bed it is 
important to find a way to minimize this loss of  the heat 
energy. 

Consider the following optimization problem. As the opti- 
mization criterion, the amount of  heat energy stored in the 
slab is used. It is necessary to maximize the amount of heat 
stored in the porous slab under the following constraints: 
(a) a given amount of  heat can be supplied by the incoming 
fluid flow and (b) there is a given duration of the process. 
As the control the inlet fluid flow temperature, ¢~.(t), is 
considered. It is assumed that this function is a bounded, 
piecewise continuous function with a minimum value um~, 
and a maximum value u . . . .  The minimum value corresponds 
to the fluid temperature in the 'cold tap' and the maximum 
value corresponds to the fluid temperature in the 'hot tap'. 

The mathematical formulation of  this problem is as 
follows. It is necessary to determine the optimal temperature 
~i,(t) that maximizes the following performance functional : 

• (~bi,) = f~ O(z, tf) dz ~ max (7) 

where the function O(z, tf) is determined by equation (5), 
under the following constraints 

and 

f l  f ~bi.(z ) dz = E = const (8) 

/,/nil n ~ b i n ( t )  ~ Uma x . ( 9 )  

To bring the problem (7)-(9) to the form of  an optimal- 
control problem it is necessary to rearrange the functional 
(7). To accomplish this, equation (5) for the function O(z,t) 
is first rearranged by the following change of the integration 
variable : 

z* = t r - z - A z .  (10) 
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Then, accounting for the assumption that the initial tem- 
perature of  the slab is uniform, equation (5) at the moment  
t = tf can be written as 

; l Az 

O(z, t 0 = e x p ( - z )  (~in(T*) 

×exp(-tf+~*+Az)lo[{4(tf-v*-Az)z}l/2]d~ *. (11) 

For tf < AL the temperature front has not  yet reached the 
outlet boundary and no heat has yet been lost with the fluid 
leaving the slab. Therefore we consider only the case tf ~> AL. 

Consider the function 

W(z, ~) = 

f exp(--  z--  tf q-/  q- Az)10 [{4( t f -  z -  Az)z} 1/2] 

if 0 ~< • ~< t r - A z  

0 if z > tf-Az. 

(12) 

Then, utilizing equations (11) and (12) and changing the 
integration order, equation (7) can be recast as 

~((oi,)= f~ O(z, tf)dz= fi'(p~,(T)7;(z)dz~max (13) 

where 

~.(~) = I~ ~I'(z, ~) dz. 

The problem given by equations (8), (9) and (13) is an 
optimal-control problem. It can be solved by the min imum 
principle of  Pontryagin considered, for example, in refs. [15, 
16]. 

Application of  this principle leads to the following require- 
ment : 

¢~n(t)[2, --E(t)] ~ min (14) 

where 2~ is the Lagrange multiplier. 
Equation (14), when applied accounting for the constraint 

(9), makes it possible to determine the optimal temperature, 
4~i,(t), as 

q~in(t) = b/min if21 - E ( t )  > 0 

(~in( t )  = b/ma x if,,~ I - -  ~ , ( t )  ~ 0 ,  ( 1 5 )  

To make use of  equations (15) it is necessary to calculate 
the value of  the Lagrange multiplier, 2L. To do this, the 
transcendental equation (8) needs to be solved accounting 
for equations (15). To solve this problem, first a segment 
that unequivocally contains the desired value of  ~.~ was selec- 
ted. Then an algorithm for finding a root of  a transcendental 
equation on a given segment was applied to equation (8). 

Figure 1 depicts the optimal controls, ¢~.(t), for different 
durations of heating, tf, for the following data : Umm = 0, 
Umax = 2, E = tf, L = 1, A = 0.05. As it can be seen in Fig. 1, 
for a small duration of heating (tf = 0.08) the optimal fluid 
inlet temperature ¢,,(t) first takes its max imum value Um,x 
and then its min imum value Umi.- With an increase in the 
duration of heating (tf = 0.2) a qualitative change in the 
behavior of  the optimal inlet temperature takes place. Now, 
the optimal inlet temperature first takes its min imum value, 
then the max imum value, and then again the min imum value. 
With a further increase in the heating duration (tf = 2) this 
qualitative behavior remains, but  the duration of the third 
segment decreases. 

Thus,  Fig. 1 shows that  with an increase in the duration 
of heating the transition from the first type of behavior 

t f=2 

, g  
tF--0.2 

2 

t~.08 
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t/If 

Fig. 1. The optimal fluid inlet temperature for different dur- 
ations of heating as a function of time. 

of  the optimal inlet temperature (maxima minima) to the 
second type (min ima-maxima-min ima)  takes place. To 
understand qualitatively the reason for this transition we 
consider two extreme cases, namely, a very short and a very 
long duration of  heating. For a very short  duration of  heating 
the temperature front has just reached the outlet boundary 
of the porous slab and the max ima-min ima  behavior is obvi- 
ously beneficial. This is because if the hot  fluid is supplied in 
the beginning of  the process, the time of  contact of  the hot  
fluid and the solid phase is the longest. Consequently,  more 
heat energy can be transferred to the solid phase. 

Contrarily, for a very long duration of  heating the hot  
fluid should be supplied at the end of  the process. Then the 
final temperature of  the solid phase will be approximately 
uniform and nearly equal the temperature of  the hot  fluid. 

For a mean  durat ion of heating the hot  fluid should be 
supplied sometime between the beginning and the end of the 
process. This leads to the min ima-max ima-min ima  
behavior. 

It is interesting to compare the value that the performance 
functional ~(~b~n) takes on the optimal functions shown in 
Fig. 1 and on the unit functions ~b*(t) -= 1. These unit func- 
tions correspond to a constant  inlet temperature of  the fluid 
phase. It is easy to show that for E = tf (this was used to 
calculate Fig. 1) the functions q~*(t) ~- 1 also satisfy con- 
straint (8). Calculations show the following : for tf = 0.08, 
¢(¢~,) /~(¢*)  = 1.320 (the gain in the amoun t  of  the heat 
energy stored when the optimal inlet temperature is applied 
instead of the constant  inlet temperature is 32.0%), for 
tf = 0.2, ~(~i,)/~(4~*) = 1.119 (the gain is 11.9%) and for 
tf = 2, ~(¢i.)/~(~b*) = 1.305 (the gain is 30.5%). Thus,  uti- 
lizing the optimal fluid inlet temperature makes  it possible 
to increase the amount  of  heat energy stored in the porous 
stab. We underline again that  this is reached due to the 
decrease of  the amoun t  of  heat which is thrown away when 
the fluid flow leaves the slab. 
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CONCLUSIONS 

(a) A method for the optimization of heating a one- 
dimensional porous sl~,b is suggested. This method makes it 
possible to optimize the performance of the packed bed with 
respect to the amount of heat stored in it. 

(b) It is shown that with an increase in the duration of 
heating a qualitative change in the behavior of the optimal 
inlet temperature takes place. For practical applications it 
means that depending on the duration of the process the inlet 
temperature should be controlled in two different ways. For 
a small duration of heating, the optimal fluid inlet tem- 
perature first takes its maximum value and then its minimum 
value. In contrast to this, for the longer duration of heating 
the optimal inlet temperature first takes its minimum value, 
then the maximum value, and then again the minimum value. 
With a further increase in the duration of the heating this 
qualitative behavior remains, but duration of the third seg- 
ment decreases. 

Acknowledgements--~ihe results presented in this paper were 
obtained while the attthor was a Research Fellow of the 
AvHumboldt Foundation (Germany) at Ruhr-University 
Bochum. The support provided by the Christian Doppler 
Laboratory for Conti:auous Solidification Processes is also 
gratefully acknowledged and appreciated. 

REFERENCES 

1. K. Vafai and M. SSzen, Analysis of energy and momen- 
tum transport for fluid flow through a porous bed, 
A S M E  J. Heat Transfer 112, 690-699 (1990). 

2. K. Vafai and M. SOzen, An investigation of a latent 
heat storage porous bed and condensing flow through it, 
A S M E  J. Heat Transfer 112, 1014-1022 (1990). 

3. M. SSzen and K Vafai, Analysis of the non-thermal 
equilibrium condensing flow of a gas through a packed 
bed, Int. J. Heat Mass Transfer 33, 1247-1261 (1990). 

4. A. Amiri and K. Vafai, Analysis of dispersion effects 
and non-thermal equilibrium, non-Darcian, variable 

porosity incompressible flow through porous media, Int. 
J. Heat Mass Transfer 37, 939-954 (1994). 

5. M. S6zen, K. Vafai and L. A. Kennedy, Thermal charg- 
ing and discharging of sensible and latent heat storage 
packed beds, J. Thermophys. Heat Transfer 5, 623-630 
(1991). 

6. A. V. Kuznetsov, An investigation of a wave of tem- 
perature difference between solid and fluid phases in a 
porous packed bed, Int. J. Heat Mass Transfer 37, 3030- 
3033 (1994). 

7. T. E. W. Schumann, Heat transfer: liquid flowing 
through a porous prizm, J. Franklin Inst. 208, 405-416 
(1929). 

8. H. S. Carslaw and J. C. Jaeger, Conduction of  Heat in 
Solids (2nd Edn), pp. 391-394. Oxford University Press, 
Oxford (1959). 

9. V. S. Arpaci and J. A. Clark, Dynamic response of fluid 
and wall temperatures during pressurized discharge for 
simultaneous time-dependent inlet gas temperature, 
ambient temperature, and/or ambient heat flux, Adv. 
Cryogenic Engng 7, 419-432 (1962). 

10. F.T. Hung and R. G. Nevins, Unsteady-state heat trans- 
fer with a flowing fluid through porous solids, ASME 
paper no. 65-HT-10 (1965). 

11. W. J. Jang and C. P. Lee, Dynamic response of solar 
heat storage systems, ASME Paper no. 74-WA/HT-22 
(1974). 

12. D. M. Burch, R. W. Allen and B. A. Peavy, Transient 
temperature distributions within porous slabs subjected 
to sudden transpiration heating, ASMEJ.  Heat Transfer 
98, 221-225 (1976). 

13. M. Riaz, Analytical solutions for single- and two-phase 
models of packed-bed thermal storage systems, ASME 
J. Heat Transfer 99, 489-492 (1977). 

14. H. C. White and S. A. Korpela, On the calculation of 
the temperature distribution in a packed bed for solar 
energy applications, Solar Energy 23, 141 144 (1979). 

15. L. S. Pontyagin, V. Boltyanskii, R. Gamkrelidze and 
E. Mishchenko, The Mathematical Theory of Optimal 
Processes. Interscience Publishers, New York (1962). 

16. M. Athans and P. L. Falb, Optimal Control: An Intro- 
duction to the Theory and lts Applications. McGraw-Hill, 
New York (1966). 


